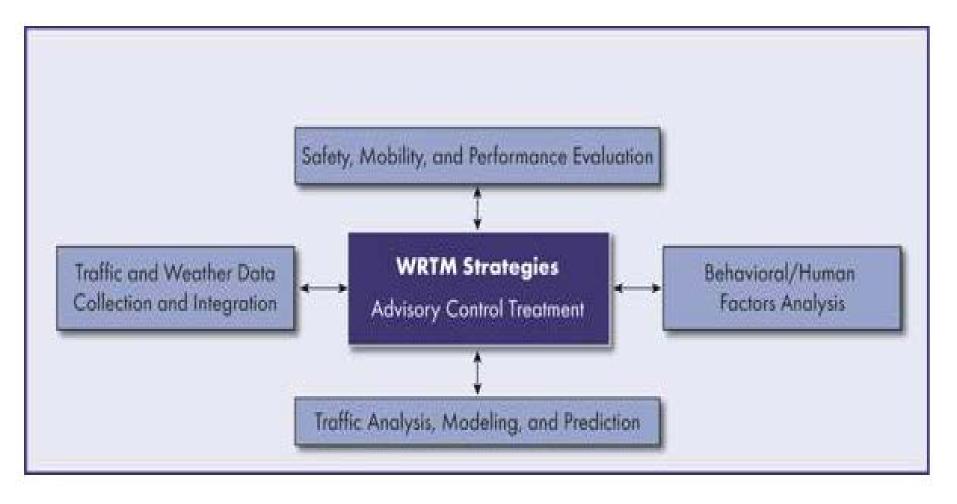


University of Wyoming

Gonzaga University


Weather Impact on Roadways

- Safety
 - ~22% of US crashes are weather related
 - 6,000 fatalities and 445,000 injuries
- Mobility
 - Capacity Reductions
 - Rain decreases travel speed 3-16%
 - Snow decreases travel speed 5-40%
 - ~23% of non-recurrent delay on highways caused by snow, ice, and fog
- Economy
 - \$2.3 billion spent annually on snow and ice removal
 - Weather related delay costs trucking companies \$2.2-\$3.5 billion annually

Source: FHWA Road Weather Management Program Website

Source: ITS JPO Road Weather http://www.its.dot.gov/road_weather/weather_traffic_mang.htm

T3 Webinar: Connected Vehicles and Rural Road Weather Management; R. Young, B. Hammit **WVOMING**

WRTM Strategies: Motorists

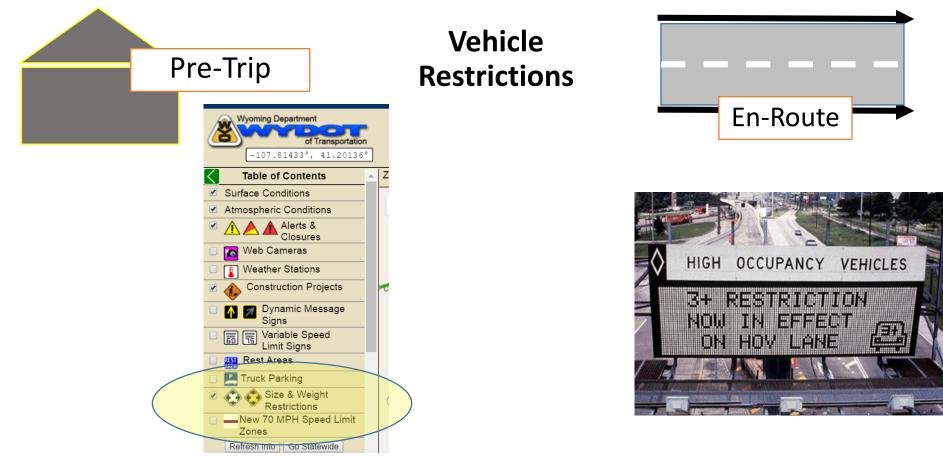
Motorist Advisories, Alert and Warning

UNIVERSITY

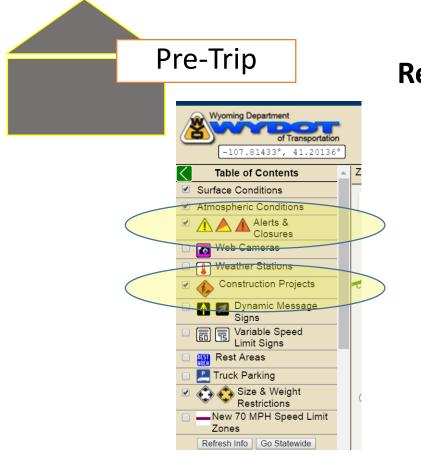
WVOMING

OF

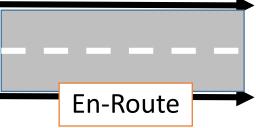
Source: Developments in Weather Responsive Traffic Management Strategies, http://map.wyoroad.info/hi.html


WRTM Strategies: Motorists

Source: Developments in Weather Responsive Traffic Management Strategies, http://map.wyoroad.info/hi.html



WRTM Strategies: Motorists



Source: Developments in Weather Responsive Traffic Management Strategies, http://map.wyoroad.info/hi.html

Road Restrictions

Source: Developments in Weather Responsive Traffic Management Strategies, http://map.wyoroad.info/hi.html

T3 Webinar: Connected Vehicles and Rural Road Weather Management; R. Young, B. Hammit UNIVERSITY OF WYOMING

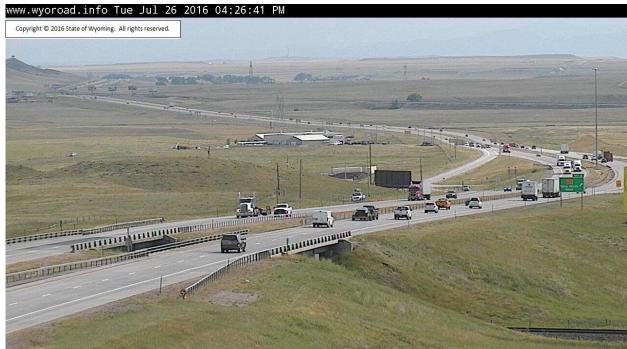
Source: Developments in Weather Responsive Traffic Management Strategies

Wyoming WRTM Strategies

• 143 miles of weather-responsive VSLs along 400-mile I-80 corridor

- 143 miles of weather-responsive VSLs along 400-mile I-80 corridor
- High wind alerts and light-weight vehicle closures

Wyoming WRTM Strategies


- 143 miles of weather-responsive VSLs along 400-mile I-80 corridor
- High wind alerts and light-weight vehicle closures
- Interactive User Map

UNIVERSITY OF WYOMING

Wyoming WRTM Strategies

- 143 miles of weather-responsive VSLs along 400-mile I-80 corridor
- High wind alerts and light-weight vehicle closures
- Interactive User Map
- Still Camera Photos

Wyoming WRTM Strategies

- VSL Effectiveness
 - Annual VSL Safety Benefits
 - 27.7 annual crash reduction
 - \$2.8 million per year in crash reduction benefits
 - Annual VSL Road Closure Benefits
 - 10.14 fewer closures per winter season (Oct-April)
 - \$54.7 million per year in closure reduction benefits

Source: Safety and Road Closure Benefits of Rural Interstate VSL System, ITSWC 2014

Data Collection Technology needed for WRTM

- Road Weather Information System (RWIS)
 - Depending on sensor configurations can provide:

air temperature, pavement temp, visibility, wind speed, surface condition, RH and dew point, camera for visual verification of conditions

- Pros real-time localized weather data
- Cons expense (capital and maintenance), point data only
 - \$25,000-50,000 Capital Costs, highly dependent on sensor package and availability of power and communication (Wyoming)

Data Collection Technology needed for WRTM

- Mobile Weather Data
 - Internal vehicle data and externally mounted sensors
 - Pros real-time localized weather for continuous roadway stretches
 - Cons require vehicles to be traveling, expensive

USDOT Connected Vehicles Initiative

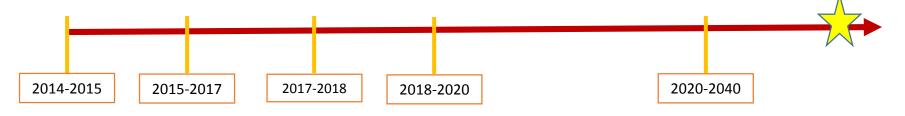
Goals:

- Crash Prevention
- Improved Safety and Mobility
- Continuous and Reliable Traveler Information

Types of Communication:

- Vehicle to Vehicle
- Vehicle to Infrastructure
- Vehicle to X

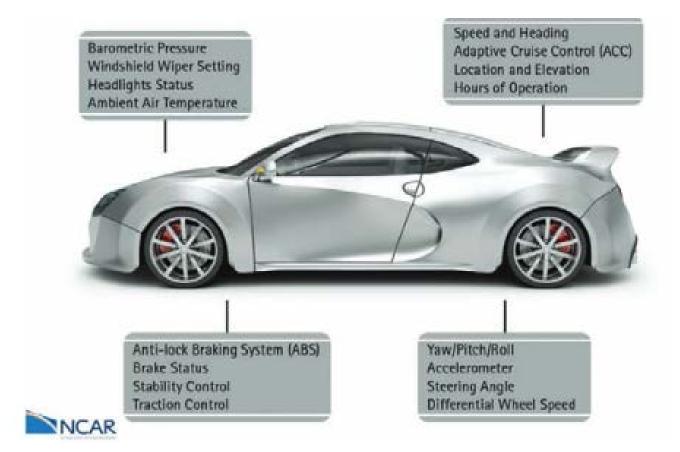
Timeline: AASHTO's National Footprint Analysis



- Plan
- Research and Pilot Projects
- Evaluation of Applications
- Deployment
- Expansion

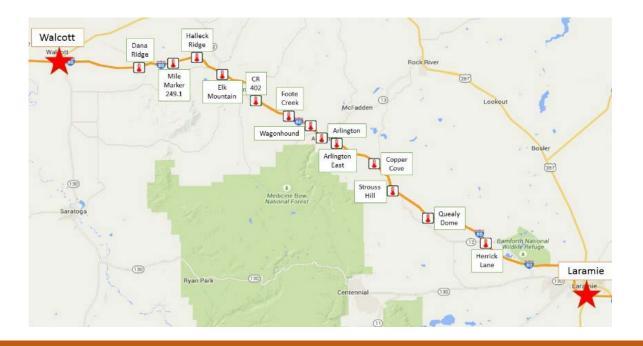
Source: AASHTO. (2014, May 22). National Connected Vehicle Field Infrastructure Footprint Analysis. T3 Webinar Series.

Timeline: AASHTO's National Footprint Analysis


2040:

- 80% of Signalized Intersections equipped with V2I Technology
- 25,000 Other Roadside Applications in Use (CCTV, Toll Readers, etc...)
- 90% of all Road Miles equipped with Real-Time Localized Information

Source: AASHTO. (2014, May 22). National Connected Vehicle Field Infrastructure Footprint Analysis. T3 Webinar Series.



Can Connected Vehicle Data be used to support WRTM?

- Winter of 2014-2015: conducted a small CV project along I-80 at the University of Wyoming
 - Connected Vehicle Weather Data for Operation of Rural Variable Speed Limit Corridors
 - Britton Hammit and Rhonda Young; MPC-15-299
 - http://www.ugpti.org/resources/reports/details.php?id=835&program=mpc

- Route Chosen because of existing RWIS Infrastructure
- 13 RWIS Stations along Route

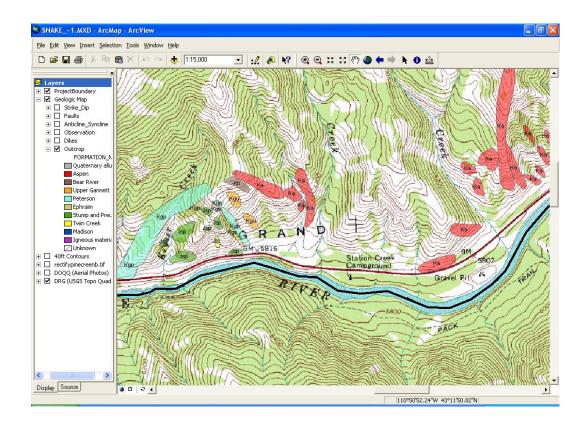
System Overview 10010 (13.5) POWER Host OBD вт OBDLink M Bluetooth

Vehicle Data Collection

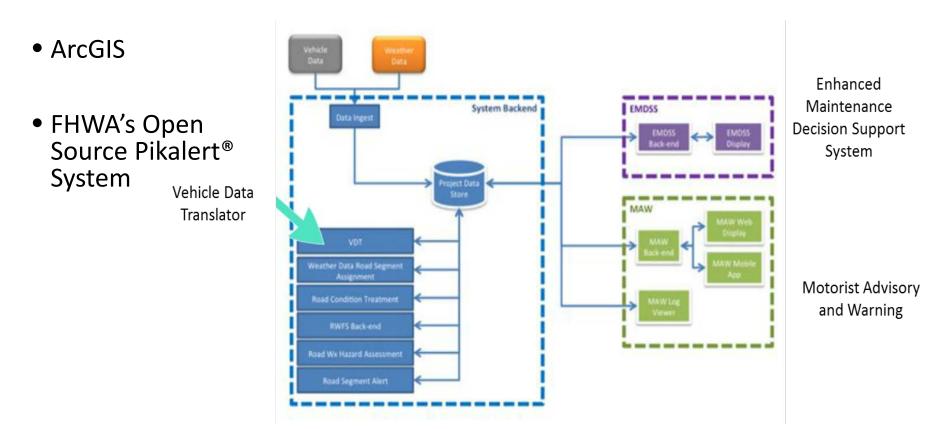
- Commercially Available
 - OBD Link Mx (WiFi)
- Open XC Platform (Open Source)
 - Ford Reference OBE
 - Chip-Kit Handmade OBE
 - Cross Chasm C4

Vehicle Parameter								
Steering Wheel Angle	Vehicle Speed							
Engine Speed	Fuel Consumed Since Restart							
Transmission Gear Position	Door Status							
Ignition Status	Windshield Wiper Status							
Brake Pedal Status	Odometer							
Headlamp Status	High Beam Status							
Accelerator Pedal Position	Fuel Level							
Torque At Transmission	Latitude & Longitude							

Data Communication

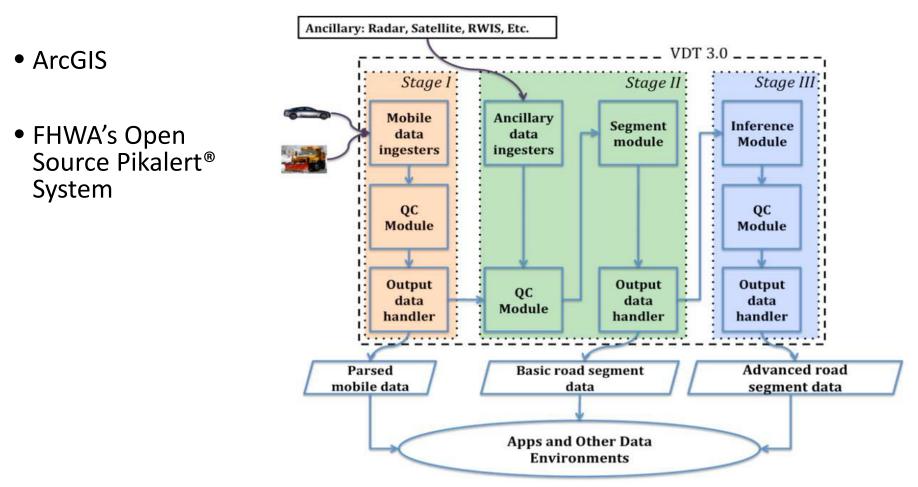


OpenXC Enabler	
Status	Dashboard
Accelerator Pedal	0.0 %
Brake Pedal	off
Engine Speed	774.0 RPM
Fuel Consumed	0.212475 L
Fuel Level	92.282906 %
Headlamp	off
High Beams	off
Ignition Status	RUN
Latitude	41.301464 *
Longitude	-105.583359 *
Odometer	43886.507812 km
Parking Brake	off
Steering Wheel	12.700073 *
Transmission Torque	5.0 Nm
Transmission Gear	NEUTRAL
Vehicle Speed	0.0 km / h
Windshield Wiper	off

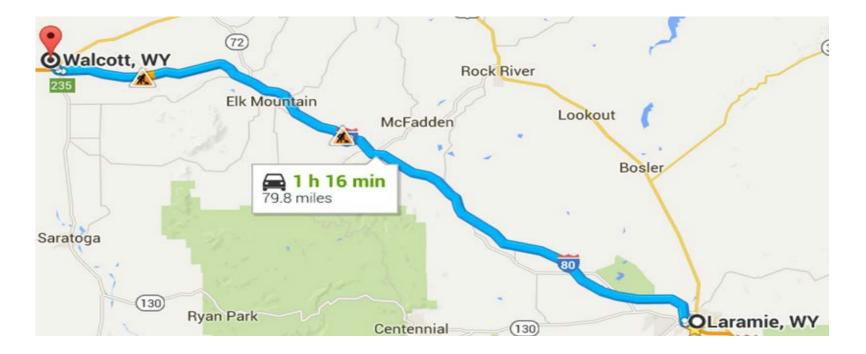


Data Processing, Analysis, and Visualization

ArcGIS


Data Processing, Analysis, and Visualization

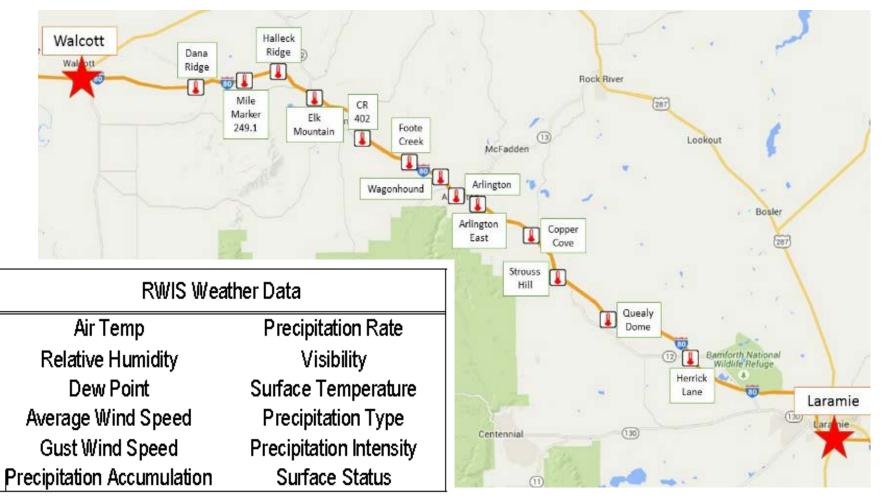
WVOMING



Data Processing, Analysis, and Visualization

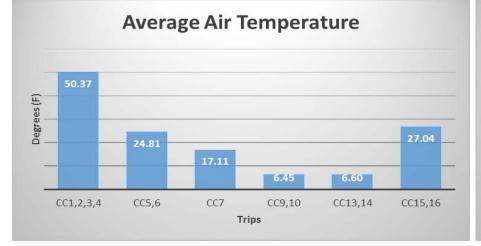
Project Overview

- Data transmitted at 60 HZ
- Each 80 mile trip at 75 mph resulted in over **200,000 observations** for each of the 16 variables

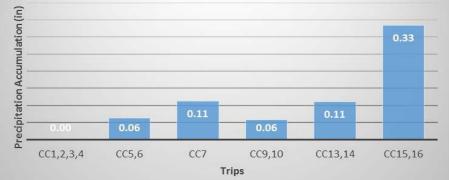

Project Overview

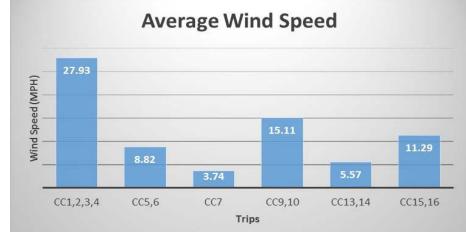
• 16 trips, over 52 million data points

	TriplDNumber Da		Date Origin		Destination	Arrival Time	Distance Traveled	Driver	Passenger	Vehicle	
. 1	CC1	2/6/2015	Laramie	9:00	Walcott	10:30	78miles	B.Hammit	H. Smith	2014 Ford Fusion	
X	X- CC2	2/6/2015	Walcott	10:30	Laramie	12:00	78miles	B.Hammit	H. Smith	2014 Ford Fusion	
	CC3	2/6/2015	Laramie	13:00	Walcott	14:30	78miles	B.Hammit	H. Smith	2014 Ford Fusion	
V	CC4	2/6/2015	Walcott	14:30	Laramie	16:00	78miles	B.Hammit	H. Smith	2014 Ford Fusion	
	CC5	2/15/2015	Laramie	12:00	Walcott	13:30	78miles	B.Hammit	L. Johnson	2014 Ford Fusion	
	CC6	2/15/2015	Walcott	13:30	Laramie	15:00 9:45	78miles 78miles	B.Hammit	L. Johnson S. Ganley	2014 Ford Fusion 2014 Ford Fusion	
	CC7	2/16/2015	Laramie	8:15	Walcott			B.Hammit			
	CC8	2/24/2015	Laramie - I-80 & Grand	12:15	Boulder	14:35	145miles	R. Young	B. Hammit	2014 Ford Fusion	
	CC9	2/26/2015	15 Laramie î	15:45	Walcott	17:00	78miles	B.Hammit		2014 Ford Fusion	
	CC10	2/26/2015	Walcott	17:30	Laramie	19:00	78miles	B.Hammit		2014 Ford Fusion	
	CC11	3/3/2015	Laramie	18:40	Herrick Lane	19:10	16miles	B.Hammit	H. Smith	2014 Ford Fusion	
	CC12 3/3/2015 Herrick Lane		19:10	Laramie	19:35	16miles	B.Hammit	H. Smith	2014 Ford Fusion		
	CC13	3/4/2015	Laramie	9:20	Walcott	10:40	78miles	B.Hammit		2014 Ford Fusion	
	CC14	3/4/2015	Walcott	10:40	Laramie	12:05	78miles	B.Hammit		2014 Ford Fusion	
	CC15	3/25/2015	Laramie	9:15	Walcott	10:30	78miles	B.Hammit		2014 Ford Fusion	
	CC16	3/25/2015	Walcott	10:30	Laramie	11:45	78miles	B.Hammit		2014 Ford Fusion	

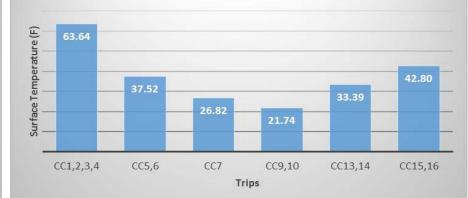


RWIS Data Summary

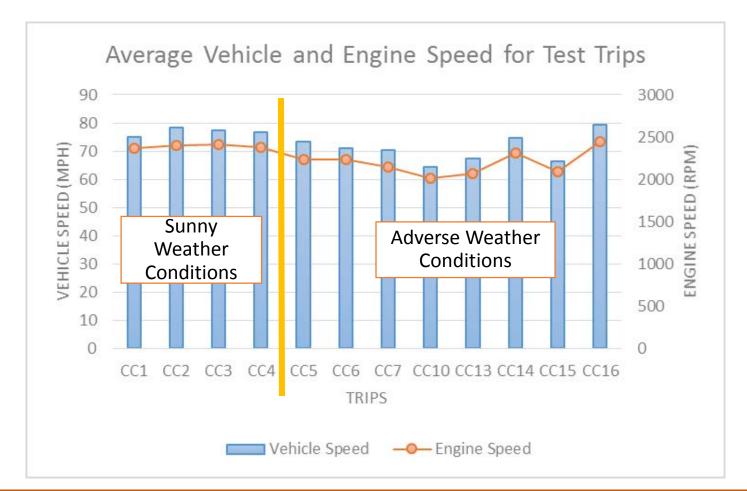




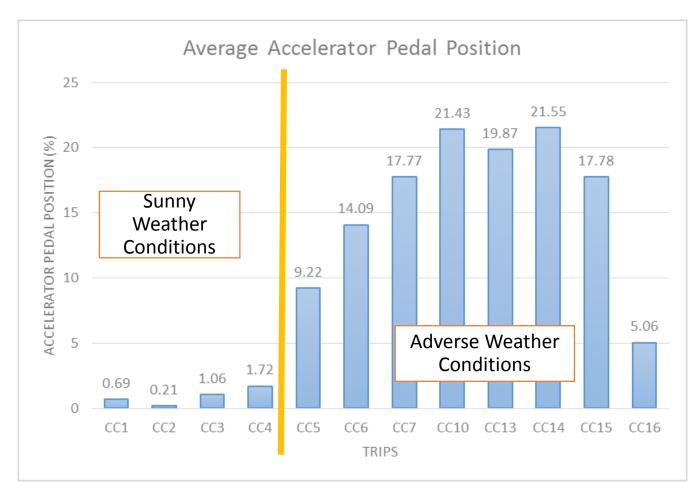
RWIS Data Summary



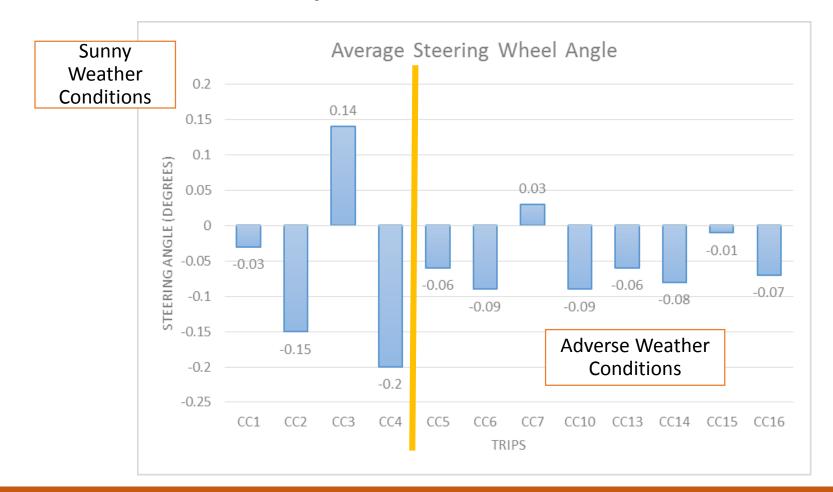
Average Precipitation Accumulation

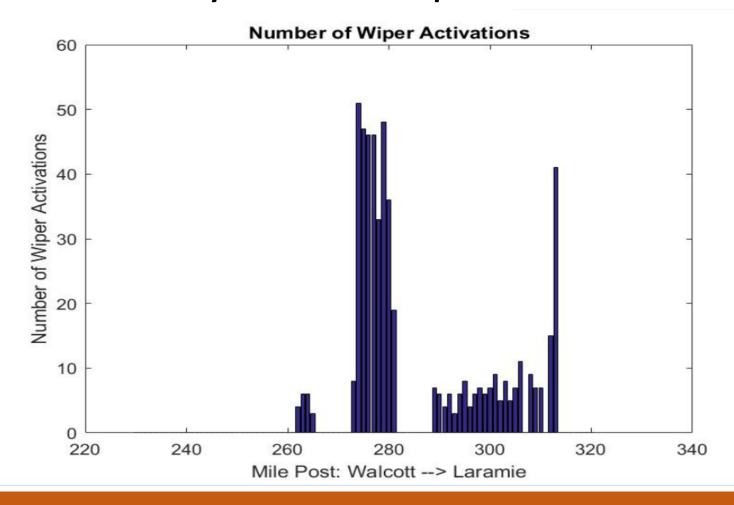


Average Surface Temperature

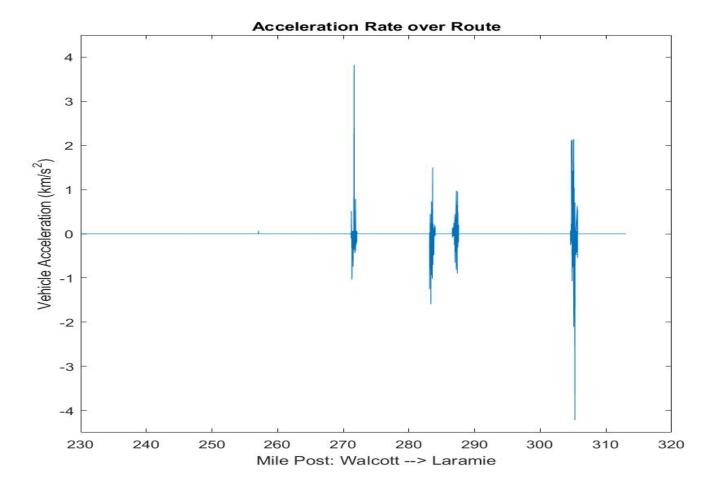


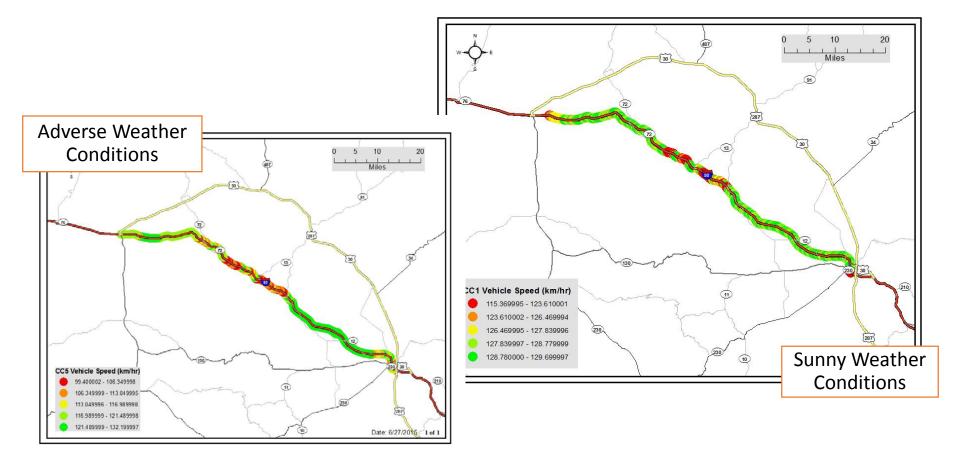
Vehicle Data Summary: Vehicle and Engine Speed



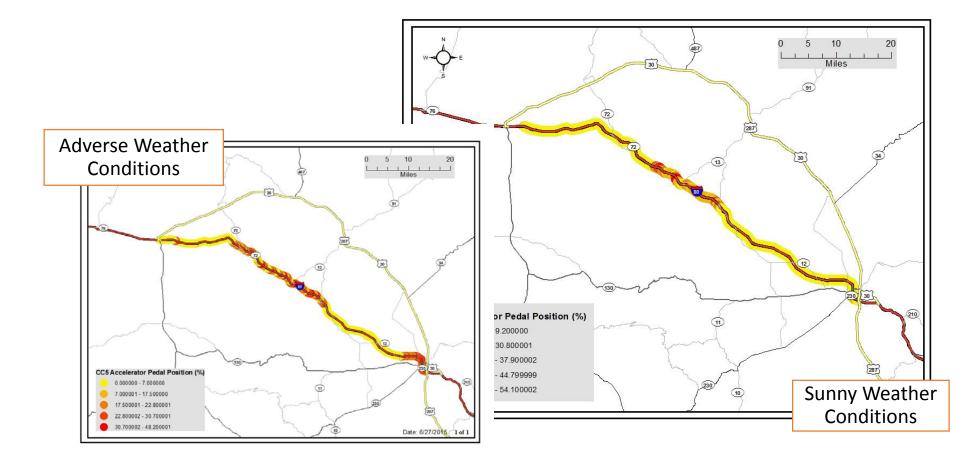

Vehicle Data Summary: Average Accelerator Pedal Position

Vehicle Data Summary

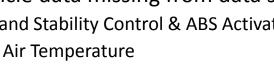



Vehicle Data Summary: Acceleration Rate

July 28, 2016



Vehicle Data Summary: Vehicle Speed



Vehicle Data Summary: Accelerator Pedal Position

Lessons Learned

- Difficulty setting up standalone Pikalert System
- Contact with NCAR
 - Crucial vehicle data missing from data sets
 - Traction and Stability Control & ABS Activation
 - Ambient Air Temperature
 - Road Surface Temperature

Lessons Learned

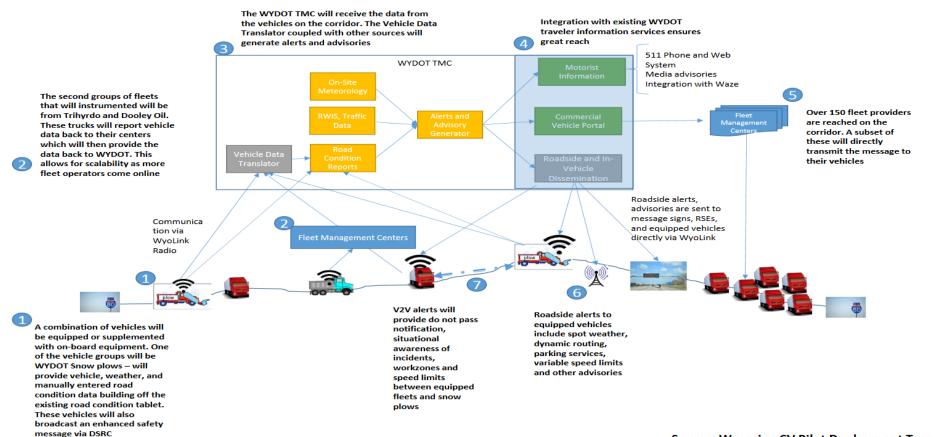
- Lack of Standardization
- Proprietary Vehicle Data Collection
 - ABS Brake and Traction Stability Control Activation

Lessons Learned

UNIVERSITY OF WYOMING

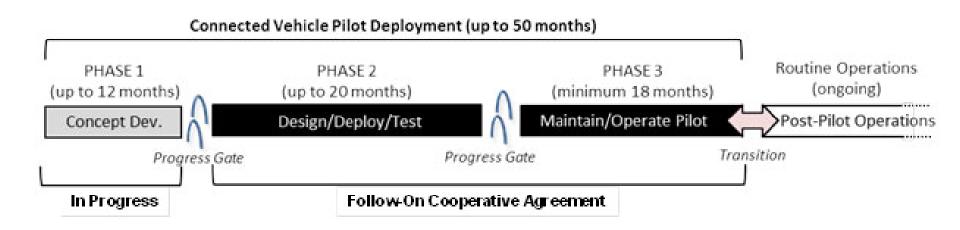
- Lack of Standardization
- Proprietary Vehicle Data Collection
 - ABS Brake and Traction Stability Control Activation

NHTSA NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION			Sub	SCRIDE		Search						
		Driving Safety	Vehicle Safety	Research	Data	Laws & Regulations	About NHTSA					
About NHTSA Home	-				СН	инер Է f (mi 🖂 🗗					
About the	-	U.S. Departme	. Department of Transportation Issues Advance Notice of									
Administrator		Proposed Rulemaking to Begin Implementation of Vehicle-to-Vehicle										
Congressional Testimony	-	Communications Technology										
Jobs at NHTSA	-	NHTSA 34-14 Monday, August 18, 2014										


Wyoming DOT Connected Vehicle Pilot Deployment Program

Source: <u>http://www.its.dot.gov/pilots/index.htm</u>

Wyoming CV Pilot Deployment Program


Source: Wyoming CV Pilot Deployment Team

Phase I Timeline

Timeline												
Task	Sep-15	Oct-15	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16
Task 1 - Program Mgt.												
Task 2 - ConOps												
Task 3 - Security Concept												
Task 4 - Safety Plan												
Task 5 - Perf. Measurment								•				
Task 6 - SyRs					3							
Task 7 - App Planning												
Task 8 - Human Use Appr												
Task 9 - Training Plan												
Task 10 - Partnership												
Task 11 - Outreach Plan												
Task 12 - Deployment Plan												
Task 13 - Readiness Summar	Y											
			•	webinar	-							

Phase II and III

UNIVERSITY OF WVOMING

Future of CV and Road Weather Condition Systems

- Considerable interest in the area of road weather management will lead to a better understanding of driver behavior and vehicle performance in non-ideal conditions
- New knowledge will enable operation of roadways that are more adaptive to current conditions, increasing system resiliency

Could CV Technology Prevent This?

April 16, 2015

• 79 Vehicle Crash on I-80 (WY)

April 20, 2015

• 59 Vehicle Crash on I-80 (WY)

