

ITS Professional Capacity Building Program

T3e Webinar

Smart Sensors and Infrasructures for Transportation July 29, 2021

Roadway Ice/snow Detection using a Novel Infrared Thermography Technology

Presenter: Keping Zhang

Infrastructure Sensing & Experimental Mechanics (iSEM) Lab

Department of Civil & Environmental Engineering, University of Utah

In collaboration with Prof. Yang of UTRAIL at the University of Utah

Outline

- 1. Introduction
 - Background
 - Current Technologies
 - Proposed Solution
- 2. Polarized Infrared Thermography Development

- Strategy 1 - Filter out S-polarized reflections at certain favorable perspective angle

- Strategy 2 Reconstruct IR images with P- & S-polarized measurements
- Lab Tests
- 3. Conclusions & Ongoing Work

Background

Slippery road condition during winter seasons imposes threats to traffic safety in snowy regions (70% of U.S. roads & population [1]). *Coefficient of friction for rubber tire*

This will

- reduce tire friction
- lengthen vehicle braking distance
- induce risks on car crashing

FHWA safety data [1] reports

- average of 1,300 deaths
- average of 116,800 injuries
- per year due to snowy and icy roads

	Coefficient of
Tire on	friction
Snow	0.5
Compact snow	0.4
Ice	0.15

on slipperv road surface [2]

Black ice on road surface

Takeaway: it is important to evaluate slippery road conditions & evaluate traffic safety.

[1] USDOT FHWA Road Weather Management Program website <u>https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm</u>
[2] Strong, C. K., Ye, Z., Shi, X. (2010). Safety effects of winter weather: the state of knowledge and remaining challenges. *Transport reviews*, 30(6), 677-699.

Summary of past work on roadway ice/snow detection

Item #	Phenomena/Technique	Investigators/ Relevant publication			
1	RWIS	Aurora 2005* [3]			
2	Infrared thermometer	Vaisala DST111[4], Ye et al.[5], Jonsson et al. [6]			
3	Passive infrared thermography with radiation polarization	Reed & Barbour [7]			
4	Active infrared radiation backscatter	Vaisala DSC111[4], Misener [8], Joshi [9]			
5	Video camera	AerotechTelub* [10], Saito et al.*[11]			
6	Laser light polarization	Schmokel [12]			
7	Microwave reflection	Kubichek & Yoakum-Stover [13]			
8	Car reactions on slippery surfaces: acceleration, ABS wheel speed, etc.	Robinson & Cook [14], Castillo Aguilar et al. [15]			
9	Pavement temperature sensors	Albrecht*[16], SRF Consulting Group Inc.*[17]			

Important attributes for each technology in roadway ice/snow detection

Attribute	Item #								
	1	2	3	4	5	6	7	8	9
Direct surface measurement	Ν	Y	Y	Y	Y	Y	Y	Х	Y
Multi-lane coverage	Ν	N	Y	N	Y	Y	Y	Х	Ν
Robustness against noise	N/A	Y	N/A	N	N	N/A	Ν	N/A	N/A
Distinguish snow and ice surfaces	Ν	N	Y	Y	N	Ν	N/A	Ν	Ν
Economics	N/A	Y	Ν	Y	Y	N/A	N/A	Y	N/A

Y: Positive; N: Negative; N/A: Not available

Takeaway: none of current technologies satisfy all the identified attributes.

1. Introduction

Technology adopted by state DOTs

DST 111 Remote Surface Temperature Sensor: single point infrared temperature measurement, compensated by emissivity of road surface
 DSC 111 Remote Surface State Sensor: single point laser spectroscopic measurement, reporting the amounts of water and ice

Spatial resolution

С

- DST 111: diameter of measuring area at 10 m (33 ft) 150 cm (59.1 in)
- DSC 111: diameter of measuring area at 10 m (33 ft) 20 cm (7.87 in)

ost:	Pos	Description	Quantity	Unit Price	Total Price USD
	1	DST111 Temperature Sensor Remote	1 EA	4,586.00	4,586.00
	2	DSC111 Road State Sensor Remote	1 EA	12,651.00	12,651.00
			Subtotal (Selling Price) Freight		17,237.00 10.00
	Tax Due Tax Due Tax Due		TAX 0% TAX 0% TAX 0%		0.00 0.00 0.00
			Grand Total	USD	17,247.00

Calibration: Twice per year

1. Introduction

Proposed Solution

Infrared Camera for multi-lane temperature measurement

Spatial resolution:			Detector Size	Number of pixels	
			320 x 240	76,800	
			160 x 120	19,200	
	Target Distance	Field of View	Pixel Size 320 x 240	Pixel Size 160 x 120	
	(Feet)	(Feet)	(Inches)	(Inches)	
	1	0.38 x 0.29	0.014 x 0.014	0.029 x 0.029	
	6	2.30 x 1.73	0.086 x 0.086	0.173 x .173	
	10	3.83 x 2.88	0.144 x 0.144	0.288 x 0.288	
	20	7.67 x 5.76	0.288 x 0.288	0.575 x 0.576	
	50	19.17 x 14.41	0.719 x 0.720	1.437 x 1.441	

Calibration frequency: every year (if looking for accurate temperature)

Cost: 320 x 240 detector ~\$10k FLIR A325sc, ~\$15k AVIO R450 Pro

Description	MSRP
FLIR A325sc w/25° Lens, 60 Hz, 320x240, -20°C to 350°C, w/ResearchIR Max	\$9,990

FLIR A325sc w/25° Lens, 60 Hz, 320x240, -20°C to 350°C, w/Research Lower cost models are available. Operat

Temperature resolution: 0.025°C - 0.1°C Accuracy: ±1°C - ±2°C Operating temp: -15 to 50°C Power consumption: 4.3 watts

Takeaway: IR camera can provide multi-lane measurement, requires less calibration, and can be less costly.

AVIO R450 Pro

1. Introduction

Proposed Solution

Develop a system for *multi-lane* roadway <u>surface temperature</u> and <u>slippery condition</u> evaluation exploiting tools including

• Polarized infrared thermography (eliminating ambient thermal noises)

• Dual-sensory measurement system and algorithms (accurate temperature mapping & segmentation)

Mission – improve traffic safety during winter seasons in snowy regions by enabling <u>early</u> <u>warning of hazardous road conditions</u> and <u>facilitating snow removal performance evaluation</u>

Strategy 1: Filter out S-polarized reflections at certain favorable perspective angle

Theoretical prediction of thermal reflections – Fresnel's Equation

• Fresnel's equations

Θ: incident angle (face angle)

n: the refractivity index of the reflectivity surface

Reflected light consisted of two contributions:

- 1. Light polarized parallel to plane of incidence Rp.
- 2. Light polarized perpendicular to plane of incidence Rs.

Strategy 1

Strategy 1

Strategy 1: Filter out S-polarized reflections at certain favorable perspective angle Suppression of thermal reflections using polarizer – Example

Henke, S., Karstädt, D., Möllmann, K. P., Pinno, F., & Vollmer, M. (2004)

Strategy 1: Filter out S-polarized reflections at certain favorable perspective angle

Suppression of thermal reflections using polarizer – Lens-polarizer assembly design

Lens-polarizer assembly

Strategy 1

Strategy 2

Strategy 2: Reconstruct IR images with P- & S-polarized measurements based on Kirchhoff's Law

 E_S Polarizer IR Polarizer angle 0 $S(\theta) \times E_r/2$ Heat source equipment $R(\theta) \times E$ $\varepsilon_{\rm S}(\theta) \times E_{\rm e}/2$ $E_{\mathbf{r}}$ $\varepsilon(\theta) \times E_{e}$ $\varepsilon + R = 1$ Measuring Defect surface E_P Polarizer Polarizer angle 90 IR $R_P(\theta) \times E_r/2$ camera Heat source equipment $R(\theta) \times B$ $\varepsilon_{P}(\theta) \times E_{e}/$ E_r $\varepsilon(\theta) \times E_{\rm e}$ Measuring Defect surface

Separate emitted energy and reflected energy steps:

- 1. Take IR image at polarizer angle 0° : E_P
- 2. Take IR image at polarizer angle 90° : E_s
- 3. Quantitative separation of the energy using:

$$E_e = \frac{2(R_P E_S - R_S E_P)}{\tau(R_P \varepsilon_S - R_S \varepsilon_P)}$$
$$E_r = \frac{2(\varepsilon_P E_S - \varepsilon_S E_P)}{\tau(R_S \varepsilon_P - R_P \varepsilon_S)}$$

4. Re-imaging E_e without background reflection E_r

Re-imaging IR measurement

Lab tests

Sample preparation (dry, wet, & ice-covered)

Data collection on dry, wet, & icecovered samples in the laboratory

2. Polarized infrared thermography development Lab tests

Data Analysis - dry concrete

2. Polarized infrared thermography development Lab tests

Original

Data Analysis - wet concrete

Strategy 1

 ϕ = 60°, 90° polarizer, lamp

60°

Strategy 2

2. Polarized infrared thermography development Lab tests Data Analysis - ice-covered concrete Original **Strategy 1 Strategy 2** ϕ = 60°, no polarizer, lamp ϕ = 75°, 90° polarizer, lamp ϕ = 60°, Ee **60° 60° 60°** 22 21 20 theory: ice Rs Rp 0.8 ϕ = 75°, no polarizer, hot water ϕ = 75°, 90° polarizer, hot water ϕ = 75°, Ee 75° **75° 75°** Reflectivity 9.0 **¥ 75** 0.2 Y 0.132857 X 60 Y 0.0119104 0 60 80 0 20 40 Face angle

1. Theoretically predict the reflectivity of concrete with dry, wet, and ice-covered condition.

2. Designed and fabricated the lens-polarizer assembly;

3. Performed laboratory tests to measure the temperature field of dry, wet, icecovered concrete surface;

4. For dry concrete surface, IR reflections from ambient environment are negligible;

5. For wet and ice-covered concrete surface, IR reflections are significant and can be effectively suppressed by the proposed strategies;

6. Strategy 1 is preferred for field tests considering its effectiveness & easiness in implementation.

3. Conclusions & Ongoing work

Field Data Collection and Dual-sensory Algorithm Development

Pattern recognition development with dual-sensory system

Acknowledgements

- **FHWA Aurora Program**
- Aurora Board
- Jeff Williams and Cody Oppermann, Utah DOT
- ≻Narwhal group
- >University of Utah
- Tina Greenfield, Iowa DOT
- Zachary N. Hans and Neal R. Hawkins, Aurora

Reference

[1] USDOT FHWA Road Weather Management Program website <u>https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm</u>

[2] Strong, C. K., Ye, Z., Shi, X. (2010). Safety effects of winter weather: the state of knowledge and remaining challenges. *Transport reviews*, 30(6), 677-699.

[3] Aurora Project (2005). New Road Surface Condition Sensors. Aurora Project 2005-06.

[4] Bridge, P. (2008). Non-invasive road weather sensors. 4th National Conference on Surface Transportation Weather, Indianapolis, Indiana.

[5] Ye, Z., Shi, X., Strong, C.K., Larson, R.E. (2011). Vehicle-based sensor technologies for winter highway operations. *IET Intelligent Transport Systems*.

[6] Josson, P., Riehm, M. (2012). Infrared Thermometry in winter road maintenance. Journal of Atmospheric and Oceanic Technology, Vol. 29.

[7] Reed, J., Barbour, B. (1997). Remote passive road ice sensor system (RPRISS). *IDEA Intelligent transportation systems Project final report*, TRB IDEA ITS-34

[8] Misener, J. A. (1998). Investigation of an optical method to determine the presence of ice on road surfaces. *California PATH working paper*, UCB-ITS-PWP-98-17.

[9] Joshi, P. (2002). A Mobile Road Condition Sensor as Winter Maintenance Aid. Final Report for ITS-IDEA Project 85.

[10] Vinnova, AerotechTelub, Hogskolan, Vagverket (2002). Final Report on Signal and Image Processing for Road Condition Classification. Aurora report 2002-02-06.

[11] Saito, M., Yamagata, S. (2014). Effect of video camera-based remote roadway condition monitoring on snow removal-related maintenance operations. *Aurora Project 2012-03*.

[12] Schmokel, P. (2004). Development of a wide area optical surface contamination detection system for public transportation application. *Final report for highway IDEA project 83*.

[13] Kubichek, R. F., Yoakum-Stover, S. (1998). Cost-Effective Microwave Sensing of Highway Road Conditions. *IDEA project Final report*, contract NCHRP-31.

[14] Robinson, R., Cook, S. J. (2012). Slippery road detection and evaluation. Michigan DOT report.

[15] Castillo Aguilar, J., Cabrera Carrillo, J. A., Guerra Fernandez, A. J., Acosta, E. C. (2015). Robust Road Condition Detection System Using In-Vehicle Standard Sensors. *Sensors*, 15(12).

[16] Albrecht, C. (2005). Pavement temperature sensors. Aurora project 2001-04.

[17] SRF Consulting Group, Inc. (2005). Laboratory and field studies of pavement temperature sensors. Aurora final report, SRF No.0024544.

[18] Suzuki, S., Ogasawara, N. (2018). Quantitative evaluation of polarized emissivity and polarized reflectivity using infrared thermographic instrument. *Advanced Experimental Mechanics*, Vol. 3.

[19] Williams, J., Oppermann, C., (2018). UDOT Snow and Ice Performance Measure. *Western States Rural Transportation Technology Implementers Forum*, Yreka, CA, June 20, 2018.

Thanks & Questions?

