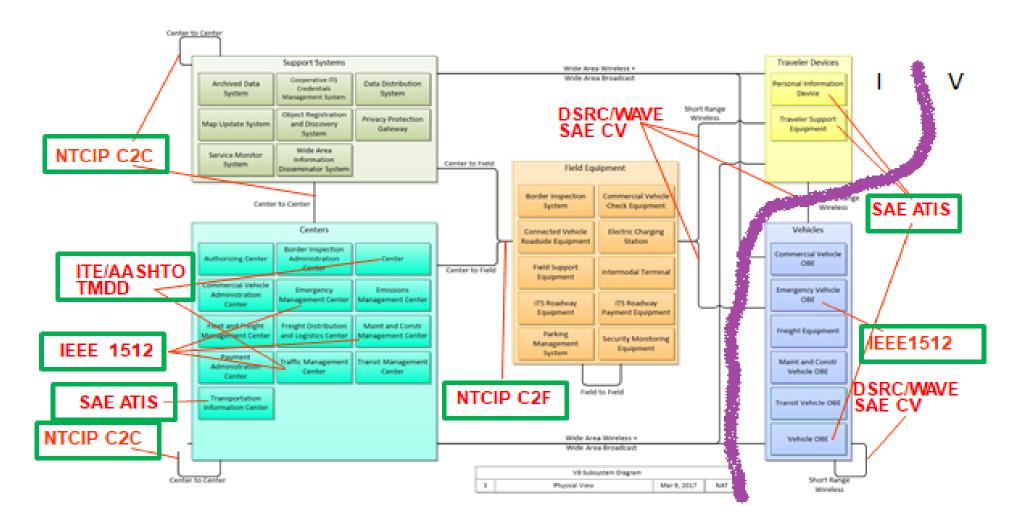
USERS. VEHICLES. INFRASTRUCTURE.

Breakout Session #23

<u>Topic</u>: Optimal integration into the transportation system ...

Summary of Key Findings and Lessons Learned

- Connectivity beneficial for both vehicles and infrastructure owner-operator (IOO)
 - E.g., can smooth transition between ODDs, allow additional services
- Automation must be accommodated along with all other current system users
- IOOs and OEMs need to know what to expect from one-another
 - Early agreement on key information flows beneficial
- Broadly accepted stakeholder consensus can obviate need to regulate
 - Still achieve desirable nationwide/cross regional interoperability
- Life-cycle management requires careful planning
 - Vehicle, infrastructure and communication technology lifecycles very different



USERS. VEHICLES. INFRASTRUCTURE.

Breakout Session #23

How the ITS System Fits Together ...

Breakout Session #23

Research Needs

- Key information flows desired for vehicles
 - Package of regulatory information at jurisdictional boundary
 - Cooperate with EU effort?
 - Real time condition information
 - Roadway striping condition, work zones, snow cover, traffic congestion ...
 - Regional and local differences in expected driver behavior to assist AV integration
- Key information flows desired for infrastructure
 - Vehicle position/speed/wipers/headlights etc.
 - Allows better understanding of network state, queue length, congestion
 - Eventually reduce infrastructure costs (e.g., video, loop detection)?
 - Automation capability of vehicles
 - Support e.g., managed lanes, appropriate warnings, MRC advice
- Stakeholder consensus on an interface architecture, specific standards
 - Many stakeholders beyond obvious groups ... need to engage all
 - Common information standards, but allow for multiple communication media?

