Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

sponsored by
US DOE Vehicle Technologies Program (project VSS086)

Matthew Barth
Kanok Boriboonsomsin
University of California Riverside
October 22, 2014
• **Overall project goal:**
 – To design, develop, and demonstrate a next-generation driving feedback system that will:
 • Improve fuel efficiency of the fleet of passenger cars and commercial vehicles by at least 2%,
 • Comply with federal safety and emissions regulations, and
 • Deployable across existing vehicle fleets.

• **Partners:**
 – ESRI
 – NAVTEQ
 – Beat the Traffic
 – Earthrise Technology
 – Automatiks
 – U. of California Berkeley
 – Riverside Transit Agency (RTA)
 – California Department of Transportation (Caltrans)
Approach: *integrated feedback system*
Approach: integrated feedback system

- Offer and encourage fuel-efficient choices to drivers/fleet operators in multiple aspects of their vehicular travel:
 - **Eco-Trip Scheduling module** allows fleets to plan a sequence of stops (e.g., for delivery) that is most fuel efficient.
 - **Eco-Routing Navigation module** suggests the most fuel-efficient route from one stop to the next.
 - **Eco-Driving Feedback module** provides sensible information, recommendation, and warning for fuel-efficient vehicle operation.
 - **Eco-Score and Eco-Rank module** provides platform for driving performance tracking, self-evaluation, and peer comparison.

- Fuel savings from individual modules can add up.
- The modules make use of real-time information, high-performance computation, and advanced analytics.
Research, Development, and Deployment Timeline

- Years 1 & 2 for research and development.
- Year 3 for field operational test (FOT) and evaluation of system benefits.
- FOT on 45 vehicles from three fleets with different characteristics.
 - 15 paratransit shuttles of Riverside Transit Agency
 - 2012 Ford E-450
 - Operated 8-12 hours a day on weekdays
 - 15 pickup trucks of California Department of Transportation
 - 2008 Chevy Silverado C15
 - Assigned to individual employees for business use
 - 15 private vehicles of general public
 - Varied make, model, year
 - Varied usage patterns and driver demographics
Eco-Routing Navigation Module
Eco-Driving Feedback Module

- Eco-Driving Feedback to Driver
 - Eco-speed band
 - Warnings
 - Aggressive acceleration
 - Hard braking
 - Excessive idling
 - Fuel efficiency
 - Cumulative fuel savings

- Feedback based on:
 - Actual fuel use
 - Driver’s actions
 - Real-time traffic
 - Road slope
Feedback System on RTA Bus
Eco-Score Module (1)

- **Eco-Score logic**
 - Not penalize drivers for stuck in traffic congestion
 - Not penalize drivers for non-discretionary idling (e.g., at red lights)
 - Encourage milder acceleration and braking
Eco-Score Module (2)

- **Eco-Score algorithms**
 - Speed score \((s_s) \)
 - Idling score \((s_i) \)
 - Acceleration score \((s_a) \)
 - Deceleration score \((s_d) \)
 - Overall score \((s_o) \)

- **Score aggregation**
 - Individual scores calculated second-by-second
 - Second-by-second scores averaged for any time periods (trip, day, week, lifetime, etc.)
Web-Applications

- Eco-Score & Eco-Rank web application
- Ranking based on the overall Eco-Score
- Ranking period
 - Monthly
 - Annually
 - Etc.
- Comparing drivers
 - Same fleets
 - Same units in a fleet
 - Same vehicles
 - Private leagues
 - Etc.
Technical Accomplishments (videos)

• System integration
• System demonstration
Preliminary Results

MPG (City)

- Fuel Economy (mpg) vs. Bus ID
- Baseline and Feedback

MPG (Highway)

- Fuel Economy (mpg) vs. Bus ID
- Baseline and Feedback

Overall Eco-Score (City)

- Overall Eco-Score vs. Bus ID
- Baseline and Feedback

Overall Eco-Score (Highway)

- Overall Eco-Score vs. Bus ID
- Baseline and Feedback
Bus 320 Comparison Results (City)

Acceleration (City)

- Baseline
- Feedback

Deceleration (City)

- Baseline
- Feedback

Speed Frequency (City)

- Baseline
- Feedback

Eco-Scores (City)

- Baseline
- Feedback
Bus 320 Comparison Results (Highway)

Acceleration (Highway)

- Baseline
- Feedback

Deceleration (Highway)

- Baseline
- Feedback

Speed Frequency (Highway)

- Baseline
- Feedback

Eco-Scores (Highway)

- Baseline
- Feedback
Discussion

• Eco-scores and detailed driving profiles suggest that the feedback system seems to have the desired effect on driving behaviors of the participating bus drivers.
 – Fuel savings due to driving behavior changes to be quantified

• Current MPG numbers are affected by a number of factors such as loaded (passenger) weight, usage of air conditioning (especially in summer), etc.
 – Need to be adjusted for these factors using a methodology that has already been developed

• Remaining work
 – FOT to be completed end of October
 – Data processing and analysis to be completed end of year
 – Final report to be completed by mid of next year
Summary

• Relevance
 – Technology targeted at improving fuel efficiency of the existing fleet by at least 2% (and potentially much higher) preliminary results show ~10%-15% improvements

• Approach
 – Cost-effective system that encourages fuel-efficient choices in trip scheduling, route selection, and vehicle operation

• Technical Accomplishments
 – Completed research & development
 – Completed system integration and demonstration

• Collaborations
 – Wide range of collaborators both inside and outside the project

• Future Work
 – complete field operational test and system evaluation